Saturday, May 9, 2015

Leave One Subject Out Cross Validation - The Video

Due to the extraordinary popularity of the leave-one-subject-out (LOSO) post I wrote a couple of years ago, and seeing as how I've been using it lately and want to remember how to do it, here is a short eight-minute video on how to do it in SPM. While the method itself is straightforward enough to follow - GLMs are estimated for each group of subjects excluding one subject, and then estimates are extracted from the resulting ROIs for just that subject - the major difficulty is batching it, especially if there are many subjects.

Unfortunately I haven't been able to figure this out satisfactorily; the only advice I can give is that once you have a script that can run your second-level analysis, loop over it while leaving out consecutive subjects for each GLM. This will leave you with the same number of second-level GLMs as there are subjects, and each of these can be used to load up contrasts and observe the resulting clusters from that analysis. Then you extract data from your ROIs for that subject which was left out for the GLM and build up a vector of datapoints for each subject from each GLM, and do t-tests on it, put chocolate sauce on it, eat it, whatever you want. Seriously. Don't tell me I'm the only one who's thought of this.

Once you have your second-level GLM for each subject, I recommend using the following set of commands to get that subject's unbiased data (I feel slightly ridiculous just writing that: "unbiased data"; as though the data gives a rip about anything one way or the other, aside from maybe wanting to be left alone, and just hang out with its friends):

1. Load up your contrast, selecting your uncorrected p-value and cluster size;
2. Click on your ROI and highlight the corresponding coordinates in the Results windown;
3. Find out what the path is to the contrasts for each subject for that second-level contrast by typing "SPM.xY.P"; that will be the template you will alter to get the single subject's data - for example, "/data/myStudy/subject_101/con_0001.img" - and then you can save this to a variable, such as "subject_101_contrast";
4. Average that subject's data across the unbiased ROI (there it is again! I can't get away from it) using something like "mean(spm_get_data(subject_101_contrast, xSPM.XYZ), 2)";
5. Save the resulting value to a vector, and update this for each additional subject.



No comments:

Post a Comment